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Fluctuations and correlations in sandpiles and interfaces with boundary pinning

Mikko J. Alava1 and Amit K. Chattopadhyay2

1Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
2Max Planck Institute for the Physics of Complex Systems, No¨thnitzer Strasse 38, D-01187 Dresden, Germany.

~Received 26 August 2003; published 20 January 2004!

Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a
ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the
Edwards-Wilkinson~EW! model of kinetic roughening. A crossover from quenched to thermal noise violates
spatial and temporal translational invariances. The bulk temporal correlation functions have the effective
exponentsb1D;0.8860.03 andb2D;0.5260.05, while at the boundariesbb,1D/2D;0.4760.05. The bulk
b1D is shown to be reproduced in a randomly kicked thermal EW model.
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I. INTRODUCTION

Criticality in nonequilibrium systems is manifested
power-law scaling forms for various correlation functions.
particularly interesting class of behaviors exists in the kine
roughening of interfaces. Even with common everyday p
nomena there are considerable practical interests: a dropl
liquid on a porous substrate, an advancing crack in a mate
or a combustion front eating into an untouched material p
vide natural examples of rough, self-affine interfaces@1–3#.

One frequent feature of systems which have appa
power-law scalings or critical properties is inhomogene
@4#. Here we consider interface models in an ensemble wh
translational invariance is violated in the steady state. T
main idea is that the drive~insertion of energy! and dissipa-
tion are spatially separated. This is relevant to growth p
cesses in bounded systems, for which such an invarianc@5#
~both spatial and temporal! is usually assumed. We focus o
rough interfaces with diffusional relaxation, with a quench
~frozen in-time! noise environment. An example is th
quenched Edwards-Wilkinson universality class~QEW!
@6–9#. A time-dependent force balances the presence
boundary conditions which pin the interface. The local int
face velocity fluctuates strongly and often even vanishes,
pending on the location. The two ingredients result in a v
lation of the spatial translational invariance a
simultaneously complicate the temporal behavior@10#. One
reason for this is that the local noise and the average l
velocity couple, since the former isa priori independent of
time, directly.

We first define in the following section the nonequili
rium steady state, in such a ‘‘fixed drive-rate ensemble.’’ D
to the broken nature of symmetries it is an open question
to what kind of criticality is to be expected. To tackle this w
do in Sec. III a simple numerical analysis of temporal tw
point correlations with such inhomogeneous fluctuations
couple these numerical observations with scaling argum
based on simple equivalent systems. Finally, we summa
the paper and remind ourselves of possible applicatio
These arise in systems where the local activity~order param-
eter! can be interpreted as such a ‘‘velocity’’ and can thus
studied over the entire time domain~quantities measurable i
laboratory and space plasmas could provide examples@11#!.
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In particular, this means that one considers the ‘‘history’’
the local dynamics, like for cellular automata that map in
interface models assandpile models@10,12,13#. These can
exhibit ‘‘self-organized criticality’’~SOC! in the probability
distributions of avalanche properties.

II. INTERFACES AND SANDPILES

The dynamics of a SOC model consists of individual av
lanches, separated by addition of grains. In an avalan
grains are shifted around by simple rules, and new sites
activated once a local threshold is exceeded, until one r
out of active sites. Due to an infinitesimal drive rate, a se
ration of time scales occurs. At the SOC critical point, t
drive by adding ‘‘grains’’ is compensated by losses at t
edges of the sandpile.

At faster drive rates, the avalanches overlap, the SO
style criticality is destroyed, but the combination of a~ran-
dom! drive and boundary dissipation still persists. Such d
namics in the SOC model~s! often maps to the QEW
interface model@10,14#. Earlier work on sandpile fluctua
tions ~see Refs.@15–17#! has concentrated on instantaneo
quantities such as the local force or velocity, in interfa
terms ~or activity and grains, in sandpile language!. Like-
wise, their power spectra have been often studied, under
assumption of both spatial and temporal translational inv
ances. An analogy of why the right framework is essen
here is provided by a simple random walk: the fluctuations
thenoisecould be measured~i.e., the walkers’ step size!, but
they do not reveal the true~Langevin! equation of motion for
the system. The Brownian particle is coincidentally a ze
dimensional interface model.

The time-integratedactivity H(x,t)5* tr(x,t)dt @18# in
such sandpiles is, in several cases, described by the dis
QEW equation,

] tH5u„n¹2H1h~x,H !1F~x,t !…, ~1!

where the step functionu forces the interface velocity to b
either zero or unity@14#. The time-dependent forceF(x,t)
integrates the local drive~‘‘energy’’ !, the grains added tox
©2004 The American Physical Society04-1
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up to t, and forms a columnar noise term that changes slo
while being constant on the avalanche time scale@14#.

The termh accounts for the quenched noise or rando
ness in the sandpile rules. We study two cases: a ran
threshold cellular automaton used to study the QEW crit
properties@19#, where the thresholdh(x,H)[nc(x,H) is
randomly picked from a distribution, after each advan
toppling at x. The second choice is the Manna sandp
model @20# where two grains of sand are redistributed
random to neighbors of the sitex, if the local ‘‘force’’ or the
number of grainsnx.nc[1.

With periodic boundary conditions, the QEW Eq.~1! has
a depinningtransition at anFc . There the interface velocity
vanishes, and critical correlations of the QEW universa
class ensue. The interface is rough, characterized by
affine temporal and spatial correlation functions@7–9#. If F
@Fc , these models show a crossover to the ‘‘thermal’’ E
@with the standard constructionh(x,H)→h(x,vt1dH)]
limit. The finite velocity washes out the quenched corre
tions in the noise.

Here, the off-criticality and the thermal limit are differen
A boundary conditionH50 is imposed on the interface. I
the steady state, the drive has to compensate for the inc
ing elastic energy, and thus theF(x,t) term and the Laplac-
ian match each other on the average. The choice^F(x,t)&
5 f t with f a fixed constant yields a constant average velo
which varies withx, ^v(x)&[^] tH(x,t)&. The equation

]H~x,t !

]t
5n¹2H~x,t !1 f t1d f ~x,t !1h„x,H~ t !…. ~2!

describes a depinning ensemble with a constantdrive rate f,
on average. Notice the difference with the usual ‘‘const
force,’’ and in particular to the ‘‘constant velocity’’ scenari
@21#, which has sometimes been considered to describe S
in general. It is easy to see that the explicit time depende
in Eq. ~2! can be absorbed by redefined variablesH→H
2 1

2 f t2 with the time dependence now being relegated to
boundary conditions. Under this change of variables,
mean-field height profile is a parabolic contour. We are
terested indH, the fluctuating part ofH(x,t). Equation~2!
has a critical pointf c(L) where the avalanches become d
tinguishable, withf c→0 asL is increased. The most natur
way to drive the system is to have spatially and tempora
random incrementsD f (x,t) occurring on a time-scale 1/f .
This corresponds to the addition of discrete ‘‘grains’’
force.

Just asH(x,t), the velocity profile is inhomogeneous. Th
noise h„x,v(x)1dH… develops temporal correlations th
depend onx: translational invariance isbroken. This is a
fundamental property of the ensemble accounting for the
that the boundary regions are closer to depinning than
bulk, as depicted in Fig. 1. In particular, both for the discr
QEW equation arising from the sandpile and for its co
tinuum counterpart, limx→0,Lv(x)501. Due to the balance
between elasticity and driving one has^v&} f /L2.

With a finite, small velocityv(x), the effective noise-
noise correlator reflects the avalanchelike dynamics. The
terface often stays pinned@v(x)50# for a residence timet
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that varies. In the fixed drive rate ensemblet has an
x-dependent distributionP(t,x), which defines the noise
correlator^h„x,H(x,t)…h„x,H(x,t1Dt)…&, since the contri-
butions from the instances, whenH(x,t)ÞH(x,t1Dt), im-
ply a d-correlated noise field. Anx-dependentP makes the
analysis of the crossover from the depinning quite difficu
since an underlying statistical translational invariance
lacking @5,7–9#.

In the simpler case of an interface with a point-correla
thermal noiseh(xW ,t) @^h(xW ,t1)h(yW ,t2)&52Dd(xW2yW )d(t2
2t1) where 2D is the noise strength# the temporal invari-
ance is broken only fort small, whenv(x,t) is still time
dependent, if the initial conditionH(x,0)50. For periodic or
open boundary conditions, the Edwards-Wilkinson equat
is statistically invariant if one simultaneously applies a dri
producing a constant velocityv(x,t)5const, and the coordi-
nate transformationH(xW ,t)→H2vt. In such a steady state
with thermal, translation invariant noise, the fluctuating p
of H(x,t) separates and maps into a random walk with pe
odic boundary conditions. This is an example of return-
zero properties of stochastic processes, analyzed recent
Baldassarriet al. @22#.

The steady-state fluctuation amplitude^(dH)2&x is a func-
tion of x only and has an easy solution as the displacemen
a walker returning to its starting point. The thermal expon
for the two-point time-correlation function,b1D51/4, is to
be compared with the constant drive-rate ensemble.
steady-state correlations or the dynamics of interface fluc
tions are a measure of sandpile dynamics, which is differ
from correlations in avalanche properties@17#, power-spectra
of the activity @15,23#, and, finally, the correlations in the
activity or interface velocity itself@16#.

III. INTERFACE FLUCTUATIONS

The interfaces are driven by depositing grains~adding to
the force! at random locations, with a fixed rate so that ne
grains are added before the previous avalanche is over.
time is measured in discrete units, and a grain is deposite
every 1/f time step. In the steady state, the grains lost
toppling out of the system establish a balance between
external drive and the restoring elastic force. In one dim
sion ~1D! we use the QEW cellular automaton, and in 2
the Manna sandpile which, in this case, is close in

FIG. 1. A sketch of a one-dimensional~1D! interface, showing
the velocity profile, thê t& ~average ‘‘residence time’’!, and the
height profile.
4-2
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depinning exponents to the 2D QEW scaling@24,25#.
We study two properties: the temporal two-point corre

tion functionC(x,t) to investigate if theb exponentcan be
defined~via the usual scalingC;tb) in spite of the lack of
translational invariance of the noiseh, and the local inter-
face fluctuation amplitudê(dH)2&. The height field is de-
composed into H(x,t)5^H(x,t)&1dH(x,t), such that
^H(x,t)&5v(x)t1A(x) where the constantA(x) accounts
for the early time behavior, starting fromH(x,0)50 ~see
Fig. 3 for an example ofdH). A statistical average is don
over a window of time and a number of samples (Dt tot up to
100 000, Nsamples 100 to 1000! to produce C2(x,t)
5^udH(x,t1t8)2dH(x,t8)u2&. The local fluctuation ampli-
tude scaling functionŝ(dH(x))2& are also computed.

Close to the boundaries,C(x,t) depends on the proximity
to the depinning transition limit, i.e.,v(x);01. In the bulk,
loosely speaking, the noise becomes more thermal. In
central parts,̂ v(x)&→12 takes place forf large enough,
which makesC(x,t) quasitrivial since the correlations i
DH vanish. Note that for the QEW automaton~or the Manna
model for that matter! 0<v<1 and if a site has alway
n(x,t).nc(x,t) due tof being large@Eq. ~2!#, the extra force
at sitex is irrelevant.

The fluctuating part of the drive,d f (x,t) in Eq. ~2! is
demonstrated in Fig. 2.

If in a fixed-drive rate ensemble the forceF(x,t) at a site
x increases discontinuously, the ‘‘jerky’’ dynamics is

F~x,t !5(
t i ,x

DFti ,x
~x!u~ t2t i ,x!, ~3!

wheret i ,x are the~random! time instances at which the force
at sitesx increase. Due to the piecewise constant nature
F(x,t), a transformation toF(x,t)5^F(t)&1dF(x,t) pro-
duces an ‘‘impulsive’’ Newtonian force termdF(x,t) that is
piecewiselinear in time, between the discontinuities att i .
An analogy is thus given by the ‘‘kicked EW,’’ k-EW, which

FIG. 2. Example of the driving force vs time.
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ensues by applying a drive as in Eq.~3! to the thermal EW, in
the same ensemble~see again Figs. 2 and 3!.

The simplest analogy to this scenario is the determini
relaxation of an elastic string, plucked at random locations
the rate of vibration is large enough, it produces therm
noise. Now the modes of vibrations will exhibit the compe
ing effect between the drive and the relaxation due to
restoring elastic force, similar to elastic interfaces in t
presence of columnar (x dependent!, quenched force fields
@8#. EW model has the inherent symmetry that tim
independent forcing maps into an initial profile, which r
laxes deterministically, and thermal fluctuations are irr
evant. Resolving Eq.~2! into its mean and fluctuating parts
for a constant acceleration@ f (t)5const#, the time-
correlation function can be shown to take the formsb5(4
2d)/4, for all t,tc , andb5(22d)/4 ~thermal EW value!
for all t.tc , where tc;1/n f . In low dimensions, where
fluctuations govern the basic dynamics, the jerky drive a
to the SOC force, such thatF(t)5 f 01 f 1t. This additional
factor competes with relaxation, on the time scale 1/f , in
which d f (x,t) is linear in time locally, and depends on th
dimensionality. Some further analysis allows one to arg
that in 1D,b should lie between 3/4 and 5/4.

Figure 4 shows the pertinent features of numerical exp
ments onC(x,t). The correlation functions are presented f
several locations and compared to the k-EW model. The t
and space symmetries~both translational and reversal! are
broken—compared to a pure EW model for whichbEW
51/4—and severaleffectiveexponents can be obtained. F
x@1, b1D;0.8860.03 depending on the exact fitting win
dow. This compares nicely with the scaling of the k-E
case, and note that the value also agrees with thecritical
QEW b exponent, as determined numerically in 1D@7#.

For the k-EW, the driving force is imposed by cycling th
additions dF between differentx, randomly, so that the
k-EW drive fluctuations d f 5F(x,t)2 f t stay bounded,
whereas in the SOC case^ud f u&;t1/2 follows Poissonian sta-
tistics. Above the time scaletc of the cyclic forcing, the
k-EW has a crossover to usual EW scaling withb;1/4.

In two dimensions, with the Manna model,b2D50.52
60.05, i.e., closer to the lower limit of 1/2~compare with

FIG. 3. Examples of thedH(x,t) at the center of a 1D system
for both a QEW sandpile and a kicked Edwards-Wilkinson mo
~see text!.
4-3
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bEW,2D50). In central parts of such simple model system
the restrictionv(x);12 comes into play, and the fluctua
tions are constrained by the binary character of the velo
~i.e., in simple terms it is rare to see thatv50). For both 1D
~depicted in Fig. 4! and 2D cases, the boundary behav
differs from the bulk. The fluctuations are driven by the d
sipation of the energy inserted into the bulk and the ensu
elastic fluctuations dominate. This is described simply
]dH(x,t)/]t.h(x,t), with the result C(x,t);2D(x)t.
These correlations at the pinned boundaries have a cross
to the temporal scaling in the bulk. The boundary system
this regime is technically equivalent to therandom-
depositionmodel of growth, which justifies the valuebb
.0.4760.05 close to the boundaries.

The strong dependence of the fluctuations onx is illus-
trated further in Fig. 5, where the spatial profiles
^(dH)2&(x) are depicted.

The fluctuation profiles show the same scaling behav
for all the system sizes as a function ofx for the 1D QEW:
^(dH)2&(x);x1.8. The k-EW exhibits thê (dH)2&(x);x
dependence. This returning random-walk-like statistics is
pected since the k-EW has a crossover to the EW phase
large t. It would be interesting to study such fluctuation pr
files in d.1.

One can argue that the exponent arises due to sim
translationally nonuniform noise. In the steady state, the
cal fluctuations are given bŷ(dH)2&(x);D(x)/n, where
D(x) now denotes the effective thermal noise strength, ax.
In this limit, the noise-noise correlation functio
^h„x,H(x,t)…h„x,H(x,t1Dt)…&;D(x) is proportional to
the squared velocity fluctuations; sincev;x2 which implies
that dv;x and thusD(x);x2 which gives ^(dH)2&(x)
;x2. This is reasonably close to the numerical value of 1
Please note that the model used tacitly assumes the re
tion 0<v<1, implying a nonparabolic velocity profile clos
to the mid part of the interface. This simple scaling argum
would then demand that in 1D, for any EW-like proce
where the velocity profile in the steady state is inhomo

FIG. 4. Temporal two-point correlation functions for the 1
case for both the QEW/SOC automaton~for several locationsx),
L5512, and the kicked EW model.
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considerations.

IV. SUMMARY

For an interface moving in a quenched random landsca
both the spatial and temporal translational invariances ca
violated by boundary pinning, compensated by an exter
drive. A steady state arises automatically~‘‘constant drive-
rate’’!, with a linearly in-time increasing force, on the ave
age. This also applies to sandpiles in the overlapping a
lanche regime. We have concentrated on an intermitte
increasing drive force since it seems the pertinent choice
most model systems and describes SOC models. If the d
ing were applied uniformly~as in, e.g., the Olami-Feder
Christensen earthquake model@26#!, the inhomogeneous
crossover to the thermal noise would still persist, leading t
violation of the translational invariance. This would also
the case if one considered a domain wall in a magnet,
scribed by the QEW~driven uniformly by an applied field
that increases and pinned at the ends!.

The part of the correlation behavior that arises from
fluctuating drive is reproduced in a similarly driven therm
EW equation. The two-point temporal correlations develo
new effective scaling regime, resulting in different expone
for the boundary and the bulk. These scalings could
sought experimentally, e.g., directly in interface dynamics
random systems@27#, or from the activity history of any
system with intermittent, continuous dynamics~e.g., plasma
physics including magnetospheric activity, reaction-diffusi
systems@11,28#!.

The ensemble presents theoretical problems in un
standing the spatially varying crossover from the quenc
noise, which is related to the concept of boundary criti

FIG. 5. Amplitude of the interface fluctuations~normalized at
x5L/2) ^dH2&(x) in 1D for both the QEW and the kicked EW
models.f 51/100 for the former for all theL564, . . .,256.
4-4
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phenomena@29# in interfaces. Similar occurrences of
breakdown of translational invariance might exist for oth
Langevin equations. An example is the one that describe
absorbing state phase transition, with history-depend
terms included@30#, and in fact the 2D Manna model i
expected to be in the same universality class. One can e
sion even more complicated scenarios, as the quenc
Kardar-Parisi-Zhang equation. Imposing a steady state le
in that case to direct symmetry breaking in the SOC lim
s

d.

ys

l

o-

ni

t
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@31#. The boundary conditions are here more important in
thermal case, qualitatively speaking, than for the EW univ
sality class. A study of the fixed drive rate case would se
interesting.
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