PHYSICAL REVIEW E 69, 016104 (2004

Fluctuations and correlations in sandpiles and interfaces with boundary pinning
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Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a
ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the
Edwards-WilkinsonNEW) model of kinetic roughening. A crossover from quenched to thermal noise violates
spatial and temporal translational invariances. The bulk temporal correlation functions have the effective
exponentsB;p~0.88+0.03 andB,5~0.52+0.05, while at the boundarig8, ;p,,p~0.47+0.05. The bulk
B1p is shown to be reproduced in a randomly kicked thermal EW model.
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[. INTRODUCTION In particular, this means that one considers the “history” of
the local dynamics, like for cellular automata that map into
Criticality in nonequilibrium systems is manifested in interface models asandpile model$10,12,13. These can
power-law scaling forms for various correlation functions. A exhibit “self-organized criticality”(SOQ in the probability
particularly interesting class of behaviors exists in the kineticdistributions of avalanche properties.
roughening of interfaces. Even with common everyday phe-
nomena there are considerable practical interests: a droplet of
liquid on a porous substrate, an advancing crack in a material
or a combustion front eating into an untouched material pro- The dynamics of a SOC model consists of individual ava-
vide natural examples of rough, self-affine interfaf®s3].  |3nches, separated by addition of grains. In an avalanche,
One frequent feature of systems which have appareniains are shifted around by simple rules, and new sites get
power-law scalings or critical properties is inhomogeneityactivated once a local threshold is exceeded, until one runs
[4]. Here we consider interface models in an ensemble wherg,t of active sites. Due to an infinitesimal drive rate, a sepa-
translational invariance is violated in the steady state. Theaiion of time scales occurs. At the SOC critical point, the
main idea is _that the dnvénserupn.of energyand dissipa-  grive by adding “grains” is compensated by losses at the
tion are spatially separated. This is relevant to growth Prozdges of the sandpile.
cesses in bounded systems, for which such an invariggice At faster drive rates, the avalanches overlap, the SOC-
(both spatial and tempovais usually assumed. We focus on gyye criticality is destroyed, but the combination ofran-
rough interfaces with diffusional relaxation, with a quenchedqyom drive and boundary dissipation still persists. Such dy-
(frozen in-timg noise environment. An example is the namics in the SOC moda often maps to the QEW
quenched Edwards-Wilkinson universality cla$QEW)  interface model10,14. Earlier work on sandpile fluctua-
[6-9]. A time-dependent force balances the presence Ofions (see Refs[15-17) has concentrated on instantaneous
boundary conditions which pin the interface. The local inter-q antities such as the local force or velocity, in interface
face velocity fluctuates strongly and often even vanishes, dggrms (or activity and grains, in sandpile languagéike-
pending on the location. The two ingredients result in a vioise, their power spectra have been often studied, under the
lation of the spatial translational invariance and a55umption of both spatial and temporal translational invari-
simultaneously complicate the temporal behaVit]. One  5nces. An analogy of why the right framework is essential
reason for this |s'that the local nc')lse'ar]d. the average locq{gre js provided by a simple random walk: the fluctuations of
\{elocny couple, since the former & priori independent of 14 noisecould be measureg.e., the walkers’ step sizebut
time, directly. _ _ _ they do not reveal the trugangevin equation of motion for
_ We first define in the following section the nonequilib- he"system. The Brownian particle is coincidentally a zero-
rium steady state, in such a “fixed drive-rate ensemble.” Du€gimensional interface model.
to the broken nature of symmetries it is an open question as Tpe time-integratedactivity H(x,t)= [*p(x,7)d [18] in

to what kind of criticality is to be expected. To tackle this we g,ch sandpiles is, in several cases, described by the discrete
do in Sec. Ill a simple numerical analysis of temporal two-(?EW equation

point correlations with such inhomogeneous fluctuations an

couple these numerical observations with scaling arguments

based on simple equivalent systems. Finally, we summarize dH=0(vV?H+ n(x,H)+F(x,t)), (1)
the paper and remind ourselves of possible applications.

These arise in systems where the local actityder param-

eten can be interpreted as such a “velocity” and can thus bewhere the step functiof forces the interface velocity to be
studied over the entire time domdiguantities measurable in either zero or unityf14]. The time-dependent forde(x,t)
laboratory and space plasmas could provide examitgs. integrates the local driv€‘energy”), the grains added ta
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up tot, and forms a columnar noise term that changes slowly *, Hx.0) o<t (x>
while being constant on the avalanche time s¢ai. Y ’ S

The term# accounts for the quenched noise or random- "'\_ mTTTTES s
ness in the sandpile rules. We study two cases: a randor \ o7 .« £
threshold cellular automaton used to study the QEW critical P v(x,t) )4
properties[19], where the thresholdy(x,H)=n.(x,H) is A ‘
randomly picked from a distribution, after each advance/| ,7 .-="" ™, - e, N
toppling atx. The second choice is the Manna sandpile [ 4" S ™ s
model [20] where two grains of sand are redistributed at

random to neighbors of the site if the local “force” or the X

number of grains),>n.=1. . FIG. 1. A sketch of a one-dimensiondID) interface, showing
With periodic boundary conditions, the QEW HA) has  the velocity profile, the(r) (average “residence time; and the
a depinningtransition at arF.. There the interface velocity heignht profile.
vanishes, and critical correlations of the QEW universality
class ensue. The interface is rough, characterized by Sel{hat varies
affine temporal and spatial correlation functidiis-9]. If F )
>F., these models show a crossover to the “thermal” EW
[with the standard constructiom(x,H)— n(x,vt+ SH)]
limit. The finite velocity washes out the quenched correla-

tions in the noise. . S i e
L - . analysis of the crossover from the depinning quite difficult,
Here, the off-cr_lt_lcahty aqd Fhe thermal limit are different. since an underlying statistical translational invariance is
A boundary conditiorH=0 is imposed on the interface. In lacking [5,7—9)

f[he steac_;ly state, the drive has to compensate for the increas- In the simpler case of an interface with a point-correlated
ing elastic energy, and thus tik€x,t) term and the Laplac- . - - - - -
thermal noisen(X,t) [(n(X,ty) n(y,t2))=2D8(X—Yy)(t,

ian match each other on the average. The choig,t)) here D is. th \ hh L .
= ft with f a fixed constant yields a constant average velocity_tl) where is the noise strengifthe temporal invari-

hich . ithx, =(gH(x.0)}. Th ti ance is broken only fot small, whenuv(x,t) is still time
which varies withx, v (x))=(aH(x.t)) © equation dependent, if the initial conditiohl (x,0)= 0. For periodic or

AH(x,1) open boundary conditions, the Edwards-Wilkinson equation
pram vV2H(x, 1)+ ft+ 8f(x,t)+ n(x,H(t)). (2) s statistically invariant if one simultaneously applies a drive
producing a constant velocity(x,t) =const, and the coordi-

describes a depinning ensemble with a constiaive rate f nate transformatioid (x,t)—H—uvt. In such a steady state,
on average. Notice the difference with the usual “constanwith thermal, translation invariant noise, the fluctuating part
force,” and in particular to the “constant velocity” scenario of H(X,t) separates and maps into a random walk with peri-
[21], which has sometimes been considered to describe SO@dic boundary conditions. This is an example of return-to-
in general. It is easy to see that the explicit time dependenceero properties of stochastic processes, analyzed recently by
in Eq. (2) can be absorbed by redefined variablés-H  Baldassarret al. [22].

— 1t2 with the time dependence now being relegated to the The steady-state fluctuation amplitude@H)?), is a func-
boundary conditions. Under this change of variables, thdion of x only and has an easy solution as the displacement of
mean-field height profile is a parabolic contour. We are in-a walker returning to its starting point. The thermal exponent
terested indH, the fluctuating part oH(x,t). Equation(2)  for the two-point time-correlation functiong,p=1/4, is to

has a critical poinf (L) where the avalanches become dis-be compared with the constant drive-rate ensemble. The
tinguishable, withf.—0 asL is increased. The most natural Steady-state correlations or the dynamics of interface fluctua-
way to drive the system is to have spatially and temporallytions are a measure of sandpile dynamics, which is different
random incrementa f(x,t) occurring on a time-scale fl/  from correlations in avalanche propert[dS], power-spectra
This corresponds to the addition of discrete “grains” of of the activity [15,23, and, finally, the correlations in the
force. activity or interface velocity itself16].

Just aH(x,t), the velocity profile is inhomogeneous. The
noise n(x,v(x)+ 6H) develops temporal correlations that
depend onx: translational invariance i®roken This is a
fundamental property of the ensemble accounting for the fact The interfaces are driven by depositing grajadding to
that the boundary regions are closer to depinning than thehe force at random locations, with a fixed rate so that new
bulk, as depicted in Fig. 1. In particular, both for the discretegrains are added before the previous avalanche is over. The
QEW equation arising from the sandpile and for its con-time is measured in discrete units, and a grain is deposited at
tinuum counterpart, lim.o v(X)=0". Due to the balance every 1f time step. In the steady state, the grains lost by
between elasticity and driving one héas)o f/L2. toppling out of the system establish a balance between the

With a finite, small velocityv(x), the effective noise- external drive and the restoring elastic force. In one dimen-
noise correlator reflects the avalanchelike dynamics. The insion (1D) we use the QEW cellular automaton, and in 2D,
terface often stays pinndd (x)=0] for a residence time=  the Manna sandpile which, in this case, is close in the

In the fixed drive rate ensembitehas an
x-dependent distributiorP(7,x), which defines the noise
correlator{ n(x,H(x,t)) n(x,H(x,t+ At))), since the contri-
butions from the instances, wheéf(x,t) #H(x,t+At), im-
ply a é-correlated noise field. Ax-dependenP makes the
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FIG. 3. Examples of th&H(x,t) at the center of a 1D system
for both a QEW sandpile and a kicked Edwards-Wilkinson model
(see text
t
o _ ensues by applying a drive as in Eg) to the thermal EW, in
FIG. 2. Example of the driving force vs time. the same ensemblsee again Figs. 2 and.3
o The simplest analogy to this scenario is the deterministic
depinning exponents to the 2D QEW scalirag,25. relaxation of an elastic string, plucked at random locations. If

We study two properties: the temporal two-point correla-the rate of vibration is large enough, it produces thermal
tion functionC(x,t) to investigate if the3 exponentcan be  noise. Now the modes of vibrations will exhibit the compet-
defined(via the usual scalin@~1t”) in spite of the lack of ing effect between the drive and the relaxation due to the
translational invariance of the noisg and the local inter- restoring elastic force, similar to elastic interfaces in the
face fluctuation amplitudé(ésH)?). The height field is de- presence of columnax(dependent quenched force fields
composed into H(x,t)=(H(x,t))+ dH(x,t), such that [8]. EW model has the inherent symmetry that time-
(H(x,t))=v(x)t+A(x) where the constanA(x) accounts independent forcing maps into an initial profile, which re-
for the early time behavior, starting fromd(x,0)=0 (see laxes deterministically, and thermal fluctuations are irrel-
Fig. 3 for an example ofH). A statistical average is done evant. Resolving Eq.2) into its mean and fluctuating parts,
over a window of time and a number of sampléd,(; upto  for a constant acceleratiord f(t)=consi, the time-
100000, Ngampies 100 to 1000 to produce C2(x,t) correlation function can be shown to take the forgs (4
=(|8H(x,t+t")— SH(x,t")|?). The local fluctuation ampli- —d)/4, for all t<t., and 8=(2—d)/4 (thermal EW valug
tude scaling functiong(SH(x))?) are also computed. for all t>t;, wheret.~1/vf. In low dimensions, where

Close to the boundarie€(x,t) depends on the proximity fluctuations govern the basic dynamics, the jerky drive adds
to the depinning transition limit, i.ev,(X)~0%. In the bulk, to the SOC force, such th#&(t)=f,+ fit. This additional
loosely speaking, the noise becomes more thermal. In thiactor competes with relaxation, on the time scalé, ih
central parts{v(x))—1" takes place forf large enough, which &6f(x,t) is linear in time locally, and depends on the
which makesC(x,t) quasitrivial since the correlations in dimensionality. Some further analysis allows one to argue
AH vanish. Note that for the QEW automattr the Manna that in 1D, 8 should lie between 3/4 and 5/4.
model for that matterO<v<1 and if a site has always Figure 4 shows the pertinent features of numerical experi-
n(x,t)>n.(x,t) due tof being larggd Eq. (2)], the extra force ments onC(x,t). The correlation functions are presented for

at sitex is irrelevant. several locations and compared to the k-EW model. The time
The fluctuating part of the drivegf(x,t) in Eqg. (2) is and space symmetrigboth translational and rever$are
demonstrated in Fig. 2. broken—compared to a pure EW model for whighy
If in a fixed-drive rate ensemble the forE¢x,t) at a site = 1/4—and severadffectiveexponents can be obtained. For
x increases discontinuously, the “jerky” dynamics is x=>1, B,p~0.88+0.03 depending on the exact fitting win-

dow. This compares nicely with the scaling of the k-EW
case, and note that the value also agrees withctfieal
F(x,t)=2 AFy (X)0(t—t; ), 3 QEW B exponent, as determined numerically in Q.
lix v For the k-EW, the driving force is imposed by cycling the
additions 6F between differentx, randomly, so that the
wheret; , are the(randon) time instances at which the forces k-EW drive fluctuations 6f =F(x,t)—ft stay bounded,
at sitesx increase. Due to the piecewise constant nature ofvhereas in the SOC cagpsf|)~tY? follows Poissonian sta-
F(x,t), a transformation td=(x,t)=(F(t))+ SF(x,t) pro- tistics. Above the time scalé, of the cyclic forcing, the
duces an “impulsive” Newtonian force terdF(x,t) thatis  k-EW has a crossover to usual EW scaling with 1/4.
piecewiselinear in time, between the discontinuities gt In two dimensions, with the Manna modeB,,=0.52
An analogy is thus given by the “kicked EW,” k-EW, which +0.05, i.e., closer to the lower limit of 1/@&ompare with
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FIG. 4. Temporal two-point correlation functions for the 1D ] . | |
case for both the QEW/SOC automat@ar several locationx), 10 10° 102 10" 10°
L=512, and the kicked EW model.
x/L

Bew2p=0). In central parts of such simple model systems, FIG. 5. Amplitude of the interface fluctuatiorfaormalized at

the restrictionv(x)~1 "~ comes into play, and the fluctua- , | oy 512)(x) in 1D for both the QEW and the kicked EW
tions are constrained by the binary character of the velocity, ,qels f = 1/100 for the former for all thé. =64. . . . 256.

(i.e., in simple terms it is rare to see that 0). For both 1D
(depicted in Fig. #and 2D cases, the boundary behavioreqs; the fluctuation scaling function follows from similar
differs from the bulk. The fluctuations are driven by the dis-.ynsiderations.
sipation of the energy inserted into the bulk and the ensuing
elastic fluctuations dominate. This is described simply by
dSH(x,t)/at=n(x,t), with the result C(x,t)~2D(x)t.
These correlations at the pinned boundaries have a crossover For an interface moving in a quenched random landscape,
to the temporal scaling in the bulk. The boundary system irhoth the spatial and temporal translational invariances can be
this regime is technically equivalent to theandom- violated by boundary pinning, compensated by an external
depositionmodel of growth, which justifies the valug, drive. A steady state arises automaticaftgonstant drive-
=0.47+0.05 close to the boundaries. rate”), with a linearly in-time increasing force, on the aver-
The strong dependence of the fluctuationsxois illus-  age. This also applies to sandpiles in the overlapping ava-
trated further in Fig. 5, where the spatial profiles of lanche regime. We have concentrated on an intermittently
((8H)?)(x) are depicted. increasing drive force since it seems the pertinent choice for
The fluctuation profiles show the same scaling behaviomost model systems and describes SOC models. If the driv-
for all the system sizes as a functionsofor the 1D QEW:  ing were applied uniformly(as in, e.g., the Olami-Feder-
((H)?)(x)~x'8 The k-EW exhibits the((H)?)(x)~X  Christensen earthquake modg26]), the inhomogeneous
dependence. This returning random-walk-like statistics is exerossover to the thermal noise would still persist, leading to a
pected since the k-EW has a crossover to the EW phase faiolation of the translational invariance. This would also be
larget. It would be interesting to study such fluctuation pro-the case if one considered a domain wall in a magnet, de-
files ind>1. scribed by the QEWdriven uniformly by an applied field
One can argue that the exponent arises due to simplgat increases and pinned at the ends
translationally nonuniform noise. In the steady state, the lo- The part of the correlation behavior that arises from the
cal fluctuations are given by(sH)2)(x)~D(x)/v, where fluctuating drive is reproduced in a similarly driven thermal
D(x) now denotes the effective thermal noise strengtlx. at EW equation. The two-point temporal correlations develop a
In this limit, the noise-noise correlation function new effective scaling regime, resulting in different exponents
(n(x,H(x,t))n(x,H(x,t+At)))~D(x) is proportional to for the boundary and the bulk. These scalings could be
the squared velocity fluctuations; singe-x? which implies  sought experimentally, e.g., directly in interface dynamics in
that Sv~x and thusD(x)~x? which gives ((6H)?)(x)  random system$27], or from the activity history of any
~x2. This is reasonably close to the numerical value of 1.8.system with intermittent, continuous dynamigsg., plasma
Please note that the model used tacitly assumes the restrighysics including magnetospheric activity, reaction-diffusion
tion O<v =<1, implying a nonparabolic velocity profile close systemq11,2§)).
to the mid part of the interface. This simple scaling argument The ensemble presents theoretical problems in under-
would then demand that in 1D, for any EW-like processstanding the spatially varying crossover from the quenched
where the velocity profile in the steady state is inhomogenoise, which is related to the concept of boundary critical

IV. SUMMARY
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phenomena[29] in interfaces. Similar occurrences of a [31]. The boundary conditions are here more important in the
breakdown of translational invariance might exist for otherthermal case, qualitatively speaking, than for the EW univer-
Langevin equations. An example is the one that describes asality class. A study of the fixed drive rate case would seem
absorbing state phase transition, with history-dependerinteresting.

terms included[30], and in fact the 2D Manna model is

e_xpected to be in the same unlversallt_y class. One can envi- ACKNOWLEDGMENT

sion even more complicated scenarios, as the quenched
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